Abstract

This paper proposes an advanced and precise technique for the segmentation of Magnetic Resonance Image (MRI) of the brain. Brain MRI segmentation is to be familiar with the anatomical structure, to recognize the deformities, and to distinguish different tissues which help in treatment planning and diagnosis. Nature’s inspired population-based evolutionary algorithms are extremely popular for a wide range of applications due to their best solutions. Teaching Learning Based Optimization (TLBO) is an advanced population-based evolutionary algorithm designed based on Teaching and Learning process of a classroom. TLBO uses common controlling parameters and it won’t require algorithm-specific parameters. TLBO is more appropriate to optimize the real variables which are fuzzy valued, computationally efficient, and does not require parameter tuning. In this work, the pixels of the brain image are automatically grouped into three distinct homogeneous tissues such as White Matter (WM), Gray Matter (GM), and Cerebro Spinal Fluid (CSF) using the TLBO algorithm. The methodology includes skull stripping and filtering in the pre-processing stage. The outcomes for 10 MR brain images acquired by utilizing the proposed strategy proved that the three brain tissues are segmented accurately. The segmentation outputs are compared with the ground truth images and high values are obtained for the measure’s sensitivity, specificity, and segmentation accuracy. Four different approaches, namely Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Bacterial Foraging Algorithm (BFA), and Electromagnetic Optimization (EMO) are likewise implemented to compare with the results of the proposed methodology. From the results, it can be proved that the proposed method performed effectively than the other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.