Abstract

It remains unclear how a single bout of exercise affects brain perfusion, oxygen metabolism, and blood-brain barrier (BBB) permeability. Addressing this unresolved issue is essential to understand the acute changes in cerebral physiology induced by aerobic exercise. To dynamically monitor the acute changes in cerebral physiology subsequent to a single aerobic exercise training session using noninvasive MRI measurements. Prospective. Twenty-three healthy participants (18-35 years, 10 females/13 males) were enrolled and divided into 10-minute exercising (N = 10) and 20-minute exercising (N = 13) groups. 3.0 T/Phase Contrast (PC) MRI (gradient echo), T2-Relaxation-Under-Spin-Tagging (TRUST) MRI (gradient echo EPI), Water-Extraction-with-Phase-Contrast-Arterial-Spin-Tagging (WEPCAST) MRI (gradient echo EPI) and T1-weighted magnetization-prepared-rapid-acquisition-of-gradient-echo (MPRAGE) (gradient echo). A baseline MR measurement plus four repeated MR measurements immediately after 10 or 20 minutes moderate running exercise. MR measurements included cerebral blood flow (CBF) as measured by PC MRI, venous oxygenation (Yv) and cerebral metabolic rate of oxygen (CMRO2) as assessed by TRUST MRI, water extraction fraction (E), and BBB permeability-surface-area product (PS) as determined by WEPCAST MRI. The time dependence of the physiological parameters was studied with a linear mixed-effect model. Additionally, pairwise t-tests comparison of the physiological parameters at each time point was conducted. A P-value of <0.05 was considered statistically significant. There was an initial drop (8.22 ± 2.60%) followed by a recovery in CBF after exercise, while Yv revealed a significant decrease (6.37 ± 0.92%), i.e., an increased oxygen extraction, and returned to baseline at later time points. CMRO2 showed a trend of increase (5.68 ± 3.04%) and a significant interaction between time and group. In addition, E increased significantly (3.86% ± 0.89) and returned to baseline level at later time points, while PS remained elevated (13.33 ± 4.79%). A single bout of moderate aerobic exercise can induce acute alterations in cerebral perfusion, metabolism, and BBB permeability. 2 TECHNICAL EFFICACY: Stage 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call