Abstract
Malignant melanoma (MM) recognition in whole-slide images (WSIs) is challenging due to the huge image size of billions of pixels and complex visual characteristics. We propose a novel automatic melanoma recognition method based on the multi-scale features and probability map, named MPMR. First, we introduce the idea of breaking up the WSI into patches to overcome the difficult-to-calculate problem of WSIs with huge sizes. Second, to obtain and visualize the recognition result of MM tissues in WSIs, a probability mapping method is proposed to generate the mask based on predicted categories, confidence probabilities, and location information of patches. Third, considering that the pathological features related to melanoma are at different scales, such as tissue, cell, and nucleus, and to enhance the representation of multi-scale features is important for melanoma recognition, we construct a multi-scale feature fusion architecture by additional branch paths and shortcut connections, which extracts the enriched lesion features from low-level features containing more detail information and high-level features containing more semantic information. Fourth, to improve the extraction feature of the irregular-shaped lesion and focus on essential features, we reconstructed the residual blocks by a deformable convolution and channel attention mechanism, which further reduces information redundancy and noisy features. The experimental results demonstrate that the proposed method outperforms the compared algorithms, and it has a potential for practical applications in clinical diagnosis.
Highlights
Malignant melanoma (MM) is a highly aggressive form of skin cancer whose incidence continues to increase at a great rate worldwide [1]
The results indicate that the proposed method can obtain more accurate recognition results in whole-slide images (WSIs)
This work proposes a novel automatic MM recognition method in WSI based on multi-scale features and the probability map
Summary
Malignant melanoma (MM) is a highly aggressive form of skin cancer whose incidence continues to increase at a great rate worldwide [1]. It is characterized by an extraordinary metastasis capacity and chemotherapy resistance, and the difficulty of effective treatment increases with its continually developing aggression. Through the WSI, Multi-Scale Feature for Melanoma Recognition the pathologist finds out the property of the tissue and marks the MM region, if it exists, to measure related pathological indicators, such as lesion size, invasion depth, etc., which provide an important reference for treatment planning and surgical prognosis [3]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have