Abstract

Mannose induces tumor cell apoptosis and inhibits glucose metabolism by accumulating intracellularly as mannose 6-phosphate while the drug sensitivity of tumors is negatively correlated with mannose phosphate isomerase gene (MPI) expression. In this study, we performed a first attempt to explore the relationship between the targeted gene MPI and immune infiltration and genetic and clinical characteristics of head and neck squamous carcinoma (HNSC) using computational algorithms and bioinformatic analysis, and further to verify the co-inhibition effects of mannose with genotoxicity, immune responses, and microbes dysbiosis in oral squamous cell carcinoma (OSCC) in vitro and in vivo. Our results found that patients with lower MPI expression had higher survival rate. The enhancement of MPI expression was in response to DNA damage gene, and ATM inhibitor was verified as a potential drug with a synergistic effect with mannose on HSC-3. In the HNSC, infiltrated immunocytes CD8+ T cell and B cell were the significantly reduced risk cells, while IL-22 and IFN-γ showed negative correlation with MPI. Finally, mannose could reverse immunophenotyping caused by antibiotics in mice, resulting in the decrease of CD8+ T cells and increase of myeloid-derived suppressor cells (MDSCs). In conclusion, the MPI gene showed a significant correlation with immune infiltration and genetic and clinical characteristics of HNSC. The treatment of ATM inhibitor, immune regulating cells of CD8+ T cells and MDSCs, and oral microbiomes in combination with mannose could exhibit co-inhibitory therapeutic effect for OSCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call