Abstract
Deep Neural Networks (DNNs) are increasingly used in safety critical autonomous systems. In this paper, we present MOZART, a DNN accelerator architecture which provides fault detection and fault tolerance. MOZART is a systolic architecture based on the Output Stationary (OS) variant, as it is the one that inherently limits fault propagation. In addition, MOZART achieves fault detection with on-line functional testing of the Processing Elements (PEs). Faulty PEs are swiftly taken off-line with minimal classification impact. The implementation of our approach on Squeezenet results in a loss of accuracy of less than 3% in the presence of a single faulty PE, compared to 15-33% without mitigation. The area overhead for the test logic does not exceed 8%. Dropout during training further improves fault tolerance, without a priori knowledge of the faults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.