Abstract

With the advent of Deep Neural Network (DNN) accelerators, permanent faults are increasingly becoming a serious challenge for DNN hardware accelerator, as they can severely degrade DNN inference accuracy. The State-of-the-art works address this issue by adding homogeneous redundant Processing Elements (PEs) to the DNN accelerator’s central computing array, or bypassing faulty PEs directly. However, such designs induce inference loss, extra hardware cost, and performance overhead. Moreover, current designs are able to only deal with a limited number of faults due to costs. In this paper, we propose FSA, a Fault-tolerant Systolic Array-based DNN accelerator with the goal of maintaining DNN inference accuracy in the presence of permanent faults. The key feature of the proposed FSA is a unified re-computing module (RCM) that dynamically recalculates the required DNN computations that are supposed to be accomplished by faulty PEs with minimal latency and power consumption. Simulation results show that the proposed FSA reduces inference accuracy loss by 46%, improves execution time by 23%, and reduces energy consumption by 35% on average, as compared to existing designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.