Abstract
New results are reported on the growth of high performance medium wavelength infrared (3–5 µm) (MWIR) HgCdTe photodiodes in the three-layer P-n-N configuration. The detector structures were grown in situ by metalorganic vapor phase epitaxy (MOVPE) on (211)B oriented CdZnTe substrates. The mobilities of the single n-type layers with x-values of ∼0.30 are in the range of (3–4.5)×104 cm2/V-s at 80K. The lifetimes on unpassivated films range from 1–5 and 4–10 µs at 80 and 180K, respectively, which are within a factor of two or less of the lifetimes calculated for Auger-1 and radiative recombination. The P-n-N films were processed into variable-area backside-illuminated diagnostic arrays and tested for quantum efficiency, spectral response, RDA, I–V curves and 1/f noise in the 120–180K range. The internal one-dimensional quantum efficiencies are in the range of 85–100%. The optical collection lengths are typically ∼25 µm. I–V curves showed that diffusion current is the dominant junction current mechanism for temperatures ≥100K. R0A values are at the one-dimensional limit for n-side diffusion currents over the 100–180K range. 1/f noise was measured to be very low at 120K and is the same as that measured in similarly processed arrays from recent LPE grown P-on-N heterojunctions. The results demonstrate that MOVPE growth can be used for large area, high performance MWIR HgCdTe detector arrays operating in the 120–180K temperature range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.