Abstract

We report the growth of HgCdTe on (552)B CdZnTe by metalorganic vapor phase epitaxy (MOVPE). The (552) plane is obtained by 180 rotation of the (211) plane about the [111] twist axis. Both are 19.47 degrees from (111), but in opposite directions. HgCdTe grown on the (552)B-oriented CdZnTe has a growth rate similar to the (211)B, but the surface morphology is very different. The (552)B films exhibit no void defects, but do exhibit ∼40 μm size hillocks at densities of 10–50 cm−2. The hillocks, however, are significantly flatter and shorter than those observed on (100) metalorganic vapor phase epitaxy (MOVPE) HgCdTe films. For a 12–14 μm thick film the height of the highest point on the hillock is less than 0.75 μm. No twinning was observed by back-reflection Laue x-ray diffraction for (552)B HgCdTe films and the x-ray double crystal rocking curve widths are comparable to those obtained on (211)B films grown side-by-side and with similar alloy composition. Etch pit density (EPD) measurements show EPD values in the range of (0.6–5)×105 cm−2, again very similar to those currently observed in (211)B MOVPE HgCdTe. The transport properties and ease of dopant incorporation and activation are all comparable to those obtained in (211)B HgCdTe. Mid-wave infrared (MWIR) photodiode detector arrays were fabricated on (552)B HgCdTe films grown in the P-n-N device configuration (upper case denotes layers with wider bandgaps). Radiometric characterization at T=120–160 K show that the detectors have classical spectral response with a cutoff wavelength of 5.22 μm at 120 K, quantum efficiency ∼78%, and diffusion current is the dominant dark current mechanism near zero bias voltage. Overall, the results suggest that (552)B may be the preferred orientation for MOVPE growth of HgCdTe on CdZnTe to achieve improved operability in focal plane arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call