Abstract
Moving window partial least-squares (MWPLS) regression was coupled with near infrared (NIR) spectra as an interval selection method to improve the performance of partial least squares discriminant analysis (PLSDA) models. This method was applied to the identification of artificial bezoar, natural bezoar and artificial bezoar in natural bezoar and compared with some traditional pattern recognition methods, such as principal component analysis (PCA), linear discriminant analysis (LDA) and PLSDA. The introduction of MWPLS enhanced the performance of PLSDA model. The results obtained showed that moving window partial least-squares discriminant analysis (MWPLSDA) can extract wavelength intervals with useful information and build simple yet effective classification models that can significantly improve the classification accuracy. Then MWPLSDA was used to identify natural bezoar by geographical origin; a promising result was achieved. The work showed that MWPLSDA could be a promising method for quality analysis and discrimination of chinese medical herbs according to geographical origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.