Abstract

The deployment of small unmanned aircraft systems (UAS) to collect routine in situ vertical profiles of the thermodynamic and kinematic state of the atmosphere in conjunction with other weather observations could significantly improve weather forecasting skill and resolution. High-resolution vertical measurements of pressure, temperature, humidity, wind speed and wind direction are critical to the understanding of atmospheric boundary layer processes integral to air–surface (land, ocean and sea ice) exchanges of energy, momentum, and moisture; how these are affected by climate variability; and how they impact weather forecasts and air quality simulations. We explore the potential value of collecting coordinated atmospheric profiles at fixed surface observing sites at designated times using instrumented UAS. We refer to such a network of autonomous weather UAS designed for atmospheric profiling and capable of operating in most weather conditions as a 3D Mesonet. We outline some of the fundamental and high-impact science questions and sampling needs driving the development of the 3D Mesonet and offer an overview of the general concept of operations. Preliminary measurements from profiling UAS are presented and we discuss how measurements from an operational network could be realized to better characterize the atmospheric boundary layer, improve weather forecasts, and help to identify threats of severe weather.

Highlights

  • Dramatic, high-impact weather events, such as severe thunderstorms with hail and wind, tornadoes, excessive rainfall and flooding, tropical storms, ice storms, heavy snowstorms, and blizzards have an impact of billions of dollars per year on the economy of the United States [1,2]

  • We propose to designate a cylindrical “geofence” within the National Airspace System (NAS), with the center of the cylinder corresponding to the vertical flight path of the WxUAV (Figure 3)

  • The ground control station (GCS) for a single 3D Mesonet unit serves as the primary information conduit between the WxUAV and the rest of the world and is used to coordinate the functionality of the various mission-critical components required for the WxUAS operations

Read more

Summary

Introduction

High-impact weather events, such as severe thunderstorms with hail and wind, tornadoes, excessive rainfall and flooding, tropical storms, ice storms, heavy snowstorms, and blizzards have an impact of billions of dollars per year on the economy of the United States [1,2]. A long-desired component to U.S operational observing systems is the ability to measure vertical profiles of wind, temperature, and moisture in the lower troposphere at high spatial and temporal resolution These so-called sounding or profiling data can be used to assess regions of thermal stratification and the degree of atmospheric static and dynamic stability, which play a role in convection initiation and maintenance of storms entering an area. Using funds from a COST action initiative, which allows European Union researchers to form interdisciplinary teams to address pressing scientific and societal challenges, investigations are underway to assess the potential impact of ground-based profiling on weather forecasting [16] This initiative focuses on the combined use of ceilometers (referred to in the paper as ALC or automatic low-power backscatter lidars/ceilometers), Doppler wind lidars, and microwave radiometers to retrieve measurements of temperature, humidity, aerosols, and wind. We will outline the anticipated trajectory of the system along with future work that would be needed to transform the 3D Mesonet concept from a fundamental research question to an operational system

Growth of WxUAS
Conceptual Framework of the 3D Mesonet
Impact of Data on Weather Forecasting
Platform and Sensor Development
Ground Control Station
Risk Mitigation
Data Examples
Conclusions and Future Directions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.