Abstract
Ship listing and motion affects the movement pattern of passengers on board, thus pedestrian traffic and evacuation dynamics would be significantly different from those on level ground. To quantify the influence of ship listing and motion on passenger evacuation, we designed a ship corridor simulator, with which we performed single-file pedestrian movement experiments considering the effect of trim and heeling. Results indicated that density is not the only factor that affects pedestrian speed under ship trim or heeling conditions, for that both individual walking speed and group walking speed would be greatly attenuated due to the influence of the trim angles. However, heeling angles show less impact on speed when compared with trim angles. In addition, the speed correlation coefficient between the adjacent experimental subjects would be higher with larger angles and lower speed. Moreover, both female and male experimental subjects need similar distance headway for walking in different trim or heeling conditions. Furthermore, experimental subjects with lower individual walking speed need longer time headway to keep enough distance headway. This work will provide fundamental guidance to the development of evacuation models and the design of evacuation facilities on board.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have