Abstract

BackgroundThe global effect of chronic pulmonary regurgitation (PR) on right ventricular (RV) dilation and dysfunction in repaired Tetralogy of Fallot (rTOF) patients is well studied by cardiovascular magnetic resonance (CMR). However, the links between PR in the RV outflow tract (RVOT), RV dysfunction and exercise intolerance are not clarified by conventional measurements. Not all patients with RV dilation share the same intracardiac flow characteristics, now measurable by time resolved three-dimensional phase contrast imaging (4D flow). In our study, we quantified regional vorticity and energy loss in rTOF patients and correlated these parameters with RV dysfunction and exercise capacity.MethodsrTOF patients with 4D flow datasets were retrospectively analyzed, including those with transannular/infundibular repair and conduit repair. Normal controls and RV dilation patients with atrial-level shunts (Qp:Qs > 1.2:1) were included for comparison. 4D flow was post-processed using IT Flow (Cardioflow, Japan). Systolic/diastolic vorticity (ω, 1/s) and viscous energy loss (VEL, mW) in the RVOT and RV inflow were measured. To characterize the relative influence of diastolic vorticity in the two regions, an RV Diastolic Vorticity Quotient (ωRVOT-Diastole/ωRV Inflow-Diastole, RV-DVQ) was calculated. Additionally, RVOT Vorticity Quotient (ωRVOT-Diastole/ωRVOT-Systole, RVOT-VQ) and RVOT Energy Quotient (VELRVOT-Diastole/VELRVOT-Systole, RVOT-EQ) was calculated. In rTOF, measurements were correlated against conventional CMR and exercise stress test results.Results58 rTOF patients, 28 RV dilation patients and 12 controls were included. RV-DVQ, RVOT-VQ, and RVOT-EQ were highest in rTOF patients with severe PR compared to rTOF patients with non-severe PR, RV dilation and controls (p < 0.001). RV-DVQ positively correlated with RV end-diastolic volume (0.683, p < 0.001), PR fraction (0.774, p < 0.001) and negatively with RV ejection fraction (− 0.521, p = 0.003). Both RVOT-VQ, RVOT-EQ negatively correlated with VO2-max (− 0.587, p = 0.008 and − 0.617, p = 0.005) and % predicted VO2-max (− 0.678, p = 0.016 and − 0.690, p = 0.001).ConclusionsIn rTOF patients, vorticity and energy loss dominate the RVOT compared to tricuspid inflow, correlating with RV dysfunction and exercise intolerance. These 4D flow-based measurements may be sensitive biomarkers to guide surgical management of rTOF patients.

Highlights

  • The global effect of chronic pulmonary regurgitation (PR) on right ventricular (RV) dilation and dys‐ function in repaired Tetralogy of Fallot patients is well studied by cardiovascular magnetic resonance (CMR)

  • Current guidelines acknowledge the limitations of these conventional CMR measurements [2, 3], as they do not necessarily predict deterioration of the RV [4], nor do they incorporate the diversity of RV morphology, RV motion, and RV outflow tract (RVOT) geometry [5,6,7]

  • With 4D flow, it is observed that intracardiac flow parameters such as vorticity and kinetic energy are altered in repaired Tetralogy of Fallot (rTOF) patients [12,13,14,15]

Read more

Summary

Introduction

The global effect of chronic pulmonary regurgitation (PR) on right ventricular (RV) dilation and dys‐ function in repaired Tetralogy of Fallot (rTOF) patients is well studied by cardiovascular magnetic resonance (CMR). Not all patients with RV dilation share the same intracardiac flow characteristics, measurable by time resolved three-dimensional phase contrast imaging (4D flow). Intracardiac flow parameters are promising hemodynamic biomarkers to potentially detect RV dysfunction, these studies have mainly correlated 4D flow biomarkers with PR and RV dilation. These studies have focused on global quantification of the RV, without considering regional abnormalities created from PR in the RVOT. There have not been any 4D flow studies that have compared rTOF against other forms of chronic volume loading in the RV

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call