Abstract
P300 spellers can provide a means of communication for individuals with severe neuromuscular limitations. However, its use as an effective communication tool is reliant on high P300 classification accuracies ( > 70%) to account for error revisions. Error-related potentials (ErrP), which are changes in EEG potentials when a person is aware of or perceives erroneous behavior or feedback, have been proposed as inputs to drive corrective mechanisms that veto erroneous actions by BCI systems. The goal of this study is to demonstrate that training an additional ErrP classifier for a P300 speller is not necessary, as we hypothesize that error information is encoded in the P300 classifier responses used for character selection. We perform offline simulations of P300 spelling to compare ErrP and non-ErrP based corrective algorithms. A simple dictionary correction based on string matching and word frequency significantly improved accuracy (35-185%), in contrast to an ErrP-based method that flagged, deleted and replaced erroneous characters (-47-0%) . Providing additional information about the likelihood of characters to a dictionary-based correction further improves accuracy. Our Bayesian dictionary-based correction algorithm that utilizes P300 classifier confidences performed comparably (44-416%) to an oracle ErrP dictionary-based method that assumed perfect ErrP classification (43-433%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.