Abstract

Abstract Context Many arboreal mammals in Neotropical forests are important seed dispersers that influence the spatial patterns of tree regeneration via their movement patterns, which in turn are determined by the canopy structure of the forest itself. However, the relationship between arboreal mammal movement and canopy structure is poorly understood, due in large part to the complexity of quantifying arboreal habitat structure. Objectives We relate detailed movement trajectories of three sympatric primate species to attributes of canopy structure derived from airborne light detection and ranging (LiDAR) in order to understand the role of structure in arboreal movement in the tropical moist forest of Barro Colorado Island, Panama. Methods We used high-resolution LiDAR to quantify three-dimensional attributes of the forest canopy of the entire island, high-resolution GPS tracking to map the movement patterns of the monkey species, and step selection functions to relate movement decisions to canopy attributes. Results We found that movement decisions were correlated with canopy height and distance to gaps, which indicate forest maturity and lateral connectivity, in all three species. In the two faster-moving species, step selection was also correlated with the thickness of the crown layer and the density of vegetation within the crown. Conclusions The correlations detected are fully in line with known differences in the locomotor adaptations and movement strategies of the study species, and directly reflect maximization of energetic efficiency and ability to escape from predators. Quantification of step selection in relation to structure thus provides insight into the ways in which arboreal animals use their environment.

Highlights

  • The canopy of Neotropical forests is home to the highest diversity of non-volant arboreal mammals in the world, with over 75 % of all vertebrates and 60 % of mammal species at least partially occupying this space (Kays and Allison 2001; Malcolm 2004)

  • We relate detailed movement trajectories of three sympatric primate species to attributes of canopy structure derived from airborne light detection and ranging (LiDAR) in order to understand the role of structure in arboreal movement in the tropical moist forest of Barro Colorado Island, Panama

  • This study has demonstrated that LiDAR can provide the necessary information required to characterize three-dimensional canopy structure in manner that captures properties relevant to the use of canopy by arboreal mammals

Read more

Summary

Introduction

The canopy of Neotropical forests is home to the highest diversity of non-volant arboreal mammals in the world, with over 75 % of all vertebrates and 60 % of mammal species at least partially occupying this space (Kays and Allison 2001; Malcolm 2004). Many of these mammals feed on fruits and fulfill important roles as seed dispersers, defecating seeds below their sleeping and foraging sites as well as along the movement trajectories between these sites. The ways that mammals differentially utilize the forest canopy remains poorly known due in large part to the difficulty associated with characterizing and quantifying the structural complexity of canopies (Carroll 1980)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call