Abstract

Chromosomal rearrangements of the ALK gene, which lead to constitutive activation of ALK tyrosine kinase, are found in various cancers. In thyroid cancers, ALK fusions, most commonly the STRN-ALK fusion, are detected in papillary thyroid cancer and with higher frequency in poorly differentiated and anaplastic thyroid cancers. Our aim was to establish a mouse model of thyroid-specific expression of STRN-ALK and to test whether this fusion drives the development of thyroid cancer with a propensity for dedifferentiation. Transgenic Tg-STRN-ALK mice with thyroglobulin-controlled expression of STRN-ALK were generated and aged with or without goitrogen treatment. Thyroids from these mice were subjected to histologic and immunohistochemical analysis. Transgenic mice with thyroid-specific expression of STRN-ALK developed poorly differentiated thyroid tumors by the age of 12 months in 22% of mice without goitrogen treatment and in 36% of mice with goitrogen treatment. Histologically and immunohistochemically, the tumors resembled poorly differentiated thyroid cancers in humans, demonstrating a solid growth pattern with sheets of round or spindle-shaped cells, decreased expression of thyroglobulin, and a tendency to lose E-cadherin. In this study, we report a novel mouse model of poorly differentiated thyroid cancer driven by the STRN-ALK oncogene with phenotypic features closely recapitulating human tumor, and with a more pronounced phenotype after additional thyroid-stimulating hormone stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.