Abstract

coq7/clk-1 was isolated from a long-lived mutant of Caenorhabditis elegans, which showed sluggish behavior and an extended life span. Mouse coq7 is homologous to Saccharomyces cerevisiae coq7/cat5 that is required for biosynthesis of coenzyme Q (CoQ), an essential cofactor in mitochondrial respiration. Here we generated COQ7-deficient mice to investigate the biological role of COQ7 in mammals. COQ7-deficient mouse embryos failed to survive beyond embryonic day 10.5, exhibiting small-sized body and delayed embryogenesis. Morphological studies showed that COQ7-deficient neuroepithelial cells failed to show the radial arrangement in the developing cerebral wall, aborting neurogenesis at E10.5. Electron microscopic analysis further showed the enlarged mitochondria with vesicular cristae and enlarged lysosomes filled with disrupted membranes, which is consistent with mitochondriopathy. Biochemical analysis demonstrated that COQ7-deficient embryos failed to synthesize CoQ9, but instead yielded demethoxyubiquinone 9 (DMQ9). Cultured embryonic cells from COQ7-deficient mice were rescued by adding bovine fetal serum in vitro, but exhibited slowed cell proliferation, which resembled to the phenotype of clk-1 with delayed cell divisions. The result implied the essential role of coq7 in CoQ synthesis, maintenance of mitochondrial integrity, and neurogenesis in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.