Abstract

In the mouse embryo, early organogenesis is characterized by the formation of a functional cardiac muscle, such that 9-day embryos exhibit beating, although not fully developed hearts. In light of this observation, we found it intriguing that mouse embryoid bodies (EB), which can develop in vitro from totipotential embryonic stem cells, undergo spontaneous contractile activity. To determine if these cells are capable of recapitulating aspects of cardiogenesis, a cDNA library was prepared from beating EB and screened with a chicken skeletal myosin heavy chain cDNA. We found that the predominant myosin transcripts in the library encode the alpha- and beta-cardiac isoforms. In addition, an embryonic skeletal myosin cDNA was isolated. The myosin heavy chain transcripts in both EB and 9-day embryonic hearts were found to be the same. Transcript-specific primers were prepared, and polymerase chain reaction analyses on single EB were carried out. The data show that a single EB is capable of expressing both the alpha- and beta-isoforms as well as very low amounts of the embryonic skeletal transcript. These data indicate that EB transcribe the appropriate tissue- and developmental stage-specific myosin heavy chain genes and therefore serve as a model system for studying early cardiogenic processes at the molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.