Abstract

Whereas most mammalian cells require extracellular signals to suppress apoptosis, preimplantation embryos can survive and develop to the blastocyst stage in defined medium without added serum or growth factors. Since cells of these embryos are capable of undergoing apoptosis, it has been suggested that their lack of dependence upon exogenous growth factors results from the production of endogenous growth factors that suppress apoptosis by an autocrine signaling mechanism. In the present study, we have examined the growth factor requirements and intracellular signaling pathways that suppress apoptosis in both mouse preimplantation embryos and embryonic stem (ES) cells, which are derived from the blastocyst inner cell mass. Cultured ES cells, in contrast to intact embryos, required serum growth factors to prevent apoptosis. Suppression of ES cell apoptosis by serum growth factors required the phosphatidylinositol 3-kinase (PI 3-kinase) signaling pathway, since apoptosis was rapidly induced by inhibition of PI 3-kinase with LY294002. In contrast, inhibition of MEK/ERK signaling with U0126 or of mTOR with rapamycin had no detectable effect on ES cell survival. Thus, like most mammalian cells, the survival of ES cells is mediated by growth factor stimulation of PI 3-kinase signaling. Treatment with LY294002 (but not with U0126 or rapamycin) similarly induced apoptosis of mouse blastocysts in serum-free medium, indicating that intact preimplantation embryos are also dependent upon PI 3-kinase signaling for survival. These results demonstrate that PI 3-kinase signaling is required to suppress apoptosis of both ES cells and intact preimplantation embryos, consistent with the hypothesis that survival of preimplantation embryos is maintained by endogenous growth factors that stimulate the PI 3-kinase pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.