Abstract

The phosphatidylinositol 3-kinase (PI3K) signal transduction pathway is a well known mediator of cell growth, proliferation, and survival signals. Whereas the expression and function of this pathway has been documented during mammalian development, evidence demonstrating the physiologic importance of this pathway in murine preimplantation embryos is beginning to emerge. This study demonstrates that inhibition of the PI3K pathway leads to the induction of apoptosis in both murine blastocysts and trophoblast stem cells. The apoptosis induced in both model systems correlates with a decrease in the expression of the glucose transporter GLUT1 at the plasma membrane. In addition, blastocysts cultured in the presence of the PI3K inhibitor LY-294002 display a decrease in both 2-deoxyglucose uptake and hexokinase activity as compared with control blastocysts. To determine the impact of PI3K inhibition on pregnancy outcome, embryo transfer experiments were performed. Blastocysts cultured in the presence of LY-294002 demonstrate a dramatic increase in fetal resorptions as compared with control embryos. Finally, we demonstrate that impairment of glucose metabolism via iodoacetate, a glyceraldehyde-3-phosphate dehydrogenase inhibitor, is sufficient to induce apoptosis in both blastocysts and trophoblast stem cells. Moreover, blastocysts treated with iodoacetate result in poor pregnancy outcome as determined by embryo transfer experiments. Taken together these data demonstrate the critical importance of the PI3K pathway in preimplantation embryo survival and pregnancy outcome and further emphasize the importance of glucose utilization and metabolism in cell survival pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.