Abstract
Mouse (Mus musculus) models have been heavily utilized in developmental biology research to understand mammalian embryonic development, as mice share many genetic, physiological, and developmental characteristics with humans. New explorations into the integration of temporal (stage-specific) and transcriptional (tissue-specific) data have expanded our knowledge of mouse embryo tissue-specific gene functions. To better understand the substantial impact of synonymous mutational variations in the cell-state-specific transcriptome on a tissue’s codon and codon pair usage landscape, we have established a novel resource—Mouse Embryo Codon and Codon Pair Usage Tables (Mouse Embryo CoCoPUTs). This webpage not only offers codon and codon pair usage, but also GC, dinucleotide, and junction dinucleotide usage, encompassing four strains, 15 murine embryonic tissue groups, 18 Theiler stages, and 26 embryonic days. Here, we leverage Mouse Embryo CoCoPUTs and employ the use of heatmaps to depict usage changes over time and a comparison to human usage for each strain and embryonic time point, highlighting unique differences and similarities. The usage similarities found between mouse and human central nervous system data highlight the translation for projects leveraging mouse models. Data for this analysis can be directly retrieved from Mouse Embryo CoCoPUTs. This cutting-edge resource plays a crucial role in deciphering the complex interplay between usage patterns and embryonic development, offering valuable insights into variation across diverse tissues, strains, and stages. Its applications extend across multiple domains, with notable advantages for biotherapeutic development, where optimizing codon usage can enhance protein expression; one can compare strains, tissues, and mouse embryonic stages in one query. Additionally, Mouse Embryo CoCoPUTs holds great potential in the field of tissue-specific genetic engineering, providing insights for tailoring gene expression to specific tissues for targeted interventions. Furthermore, this resource may enhance our understanding of the nuanced connections between usage biases and tissue-specific gene function, contributing to the development of more accurate predictive models for genetic disorders.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have