Abstract

Abstract A newly developed global nonhydrostatic model is used for life cycle experiments (LCEs) of baroclinic waves, and the resolution dependency of frontal structures is examined. LCEs are integrated for 12 days with horizontal grid intervals ranging from 223 to 3.5 km in a global domain. In general, fronts become sharper and corresponding vertical flow strengthens as horizontal resolution increases. However, if the ratio of vertical and horizontal grid intervals is sufficiently small compared to the frontal slope s, the overall frontal structure remains unchanged. In contrast, when the ratio of horizontal and vertical grid intervals exceeds 2s − 4s, spurious gravity waves are generated at the cold front. A linear model for mountain waves quantitatively explains the mechanism of the spurious waves. The distribution of the basic wind is the major factor that determines wave amplitude and propagation. The spurious waves propagate up to a critical level at which the basic wind speed normal to the front is equal to the propagation speed of the front. Results from the linear model suggest that an effective way to eliminate spurious waves is to choose a stretched grid with a smaller vertical grid interval in lower layers where strong horizontal winds exist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.