Abstract

Improving the understanding of connections spanning from mountain to sea and integrating those connections into decision models have been increasingly recognized as key to effective coastal resource management. In this paper, we aim to improve our understanding of the relative importance of linkages between a forested watershed, a coastal groundwater aquifer, and a nearshore marine groundwater-dependent ecosystem (GDE) using a dynamic groundwater optimization framework and simple ecosystem equations. Data from the Kīholo aquifer on the Kona Coast of Hawai‘i Island are used to numerically illustrate optimal joint management strategies and test the sensitivity of those strategies to variations in physical and behavioral parameter values. We find that for a plausible range of watershed management costs, protecting part of the recharge capture area is always optimal. Without watershed protection, maintaining a safe minimum standard growth rate for a GDE-dependent marine indicator species, reduces net present value non-trivially, but optimal investment in watershed conservation offsets that potential reduction by 75 %. In general, we find that optimal watershed management and groundwater pumping are most sensitive to changes in water demand growth and parameters that describe nearshore salinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call