Abstract

Contamination of groundwater in coastal aquifers is a significant environmental concern for coastal populations across the world. As it not only leads to the depletion of available freshwater resources, but also threatens the ecology and economy of the coastal zones. A quantitative understanding of contaminant transport processes within coastal aquifer systems is, therefore, essential for efficient planning and management of coastal environments. The overarching aim of this research is to investigate the behaviour of contaminant transport patterns for various contaminant transport scenarios in a coastal unconfined aquifer. For this purpose, a series of laboratory-scale experiments have been carried out in the setup of a rectangular flow tank using dye to trace the movement of contaminant plume patterns with homogeneous soil formations. The experimental data indicate that the contaminant travels upward towards the seaward boundary when it approaches the saltwater wedge and then exits around the coastline. Upon installation of the pump, the saltwater intrusion wedge was moving rapidly towards the freshwater aquifer, and the contaminant was also moving along with the saltwater wedge towards the pump location. Experimental results also clearly show that the contaminant plume formed an elongated shape as it approached the saltwater–freshwater interface due to dispersion effects. The findings from this experimental study helped us to have a better understanding of the contaminant transport processes occurring in a coastal unconfined aquifer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call