Abstract

ABSTRACT The current work addresses an industrial problem related to injection moulding manufacturing with focus on mould wear-out prediction. Real data sets are provided by an industrial partner that uses a multitude of moulds with different shapes and sizes in its production. An analysis of the data is presented and begins with clustering the moulds based on their characteristics and pre-chosen running settings. Using the results of the clustering, the mould wear-out is modelled using Kaplan-Meier survival curves. Furthermore, a random survival forest model is fitted for comparison and model performance is assessed. The main novelty of the case study is the implementation of mould wear-out prediction in real-time with the outcomes presented in terms of conditional survival curves including a proposed early warning system. For visualization and further industrial implementation, an R Shiny dashboard is developed and presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.