Abstract
The current methods for the predictionof mortality and amputation for inpatients with diabetic foot (DF) use onlyconventional, simple variables, which limitstheir performance. Here, we used a random survival forest (RSF) model and multicomponent variables to improve the prediction of mortality and amputation for these patients. We performed a retrospective cohort study of 175 inpatients with DF who were recruited between 2014 and 2021. Thirty-one predictors in six categories were considered as potential covariates. Seventy percent(n = 122) of the participants were randomly selected to constitute a training set, and 30% (n = 53) were assigned to a testing set. The RSF model was used to screen appropriate variables for their value as predictors of 2-year all-cause mortality and amputation, and a multicomponent prediction model was established. Model performance was evaluated using the area under the curve (AUC) and the Hosmer-Lemeshow test. The AUCs were compared using the Delong test. Seventeen variables were selected to predict mortality and 23 were selected to predict amputation. Uric acid and alanine transaminase were thetop two most usefulvariables for the prediction of mortality, whereas urine protein and platelet were the top variablesfor the prediction of amputation. The AUCs were 0.913 and 0.851for the prediction of mortality for the training and testing sets, respectively; and the equivalent AUCs were 0.963 and 0.893 for the prediction of amputation. There were no significant differences between the AUCs for the training and testing sets for both the mortality and amputation models. These models showed a good degree of fit. Thus, the RSF model can predict mortality and amputation in inpatients with DF. This multicomponent prediction model could help clinicians consider predictors of different dimensions to effectively prevent DF from clinical outcomes .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.