Abstract

Background/Aims Prone hip extension motion pattern derives from the motor muscle firing pattern, and functional deficits are determined by comparing this pattern with a normal prone hip extension motion muscle recruitment pattern, defined more than 30 years ago by scientifically insufficient methods. The aim of this study was to examine the differences between electromyography recruitment onsets and orders of muscles participating in prone hip extension motion, and to determine whether there is a consistent and dominant motor pattern. Methods The sample consisted of 106 healthy participants. Onset times of semitendinosus, ipsilateral and contralateral erector spinae muscles were determined as 10% of the peak rectified amplitude of the electromyography signal for each of the 18 prone hip extension bilateral repetitions. These values were used to determine the recruitment order for each repetition, as well as to calculate the average ipsilateral and contralatral normalised onset times (ie relative times to firing of the semitendinosus muscle). The main analysis was performed using a one-way analysis of variance. The level of statistical significance was set at P<0.05. Results One-way analysis of variance revealed a significantly delayed onset of prone hip extension of the contralateral erector spinae muscles compared to the other muscles (F=7.02; P<0.001; Cohen's f=0.209). Muscle activation initiated by the semitendinosus and ipsilateral erector spinae muscles was the most common. Conclusions The ipsilateral erector spinae muscle contracts simultaneously with the semitendinosus muscle as a proximal stabiliser, enabling distal hip mobility. The use of the prone hip extension test in recognising dysfunction is limited to when the contralateral erector spinae muscle is initiated first during prone hip extension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call