Abstract

The effect of experimentally induced seizure activity on the functional reorganization of motor maps has not previously been investigated. Furthermore, while the functional reorganization of motor maps has been thought to involve increases in synaptic communication, there has yet to be a test of this hypothesis. Here we show that repeated seizure activity (kindling), that is accompanied by increased synaptic strength within adult rat motor cortex, results in a doubling of the caudal forelimb motor area. We measured neo-cortical evoked potentials in the right hemisphere prior to 25 days of electrical kindling of the medial frontal corpus callosum or amygdala and re-measured them either 1 or 21 days following the last kindling session. Then, using high resolution intracortical microstimulation (ICMS), the caudal forelimb area in the left hemisphere was mapped. This is the first report of any procedure causing a motor representation to double in size. Furthermore, this expansion was related to the enhanced area of a neocortical polysynaptic field potential and not the motor convulsions per se. Moreover, both the motor map and field potential enhancements were persistent in nature and could be driven from either cortical or limbic sites. The data have implications for human populations with epilepsy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.