Abstract

Brain machine interfaces (BMIs) used for movement restoration primarily rely on studies of motor decoding. It has been proved that local field potentials (LFPs) from primary motor cortex and premotor cortex of normal rodents could be used for decoding motor signals. However, few studies have explored the decoding performance of these brain areas under motor cortex damage. In this work, we focus on force decoding performance of LFPs spectrum from both ipsilesional caudal forelimb area (CFA) and rostral forelimb area (RFA) of rodents with ischemia over CFA. After three months of ischemia induced by photothrombosis over CFA, the power of high-frequency bands (>120 Hz) from both CFA and RFA can decode force signals by Kalman filters. The fair performance of CFA indicates motor reorganization over penumbra. Further exploration of RFA decoding ability proves that at least four electrodes of RFA should be used on decoding and electrodes far from CFA of stroke rats could achieve almost as good results as those close to CFA of normal rats, which indicates the motor remapping. Experimental results show the long-term stability of PM LFPs decoding performance of stroke rats as the trained Kalman model could be used to accurately decode force some days later which provides a possibility for online decoding system. In conclusion, our work shows that even under CFA ischemia, high-frequency power of LFPs from RFA is still able to accurately decode force signals and has long stability, which provides the possibility of BMIs for motor function reconstruction of chronic stroke patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call