Abstract
Multiple sclerosis (MS) is a clinically heterogeneous disease. Biomarkers that can assess pathological processes that are unseen with conventional imaging remain an unmet need in MS disease management. Motor evoked potentials (MEPs) could be such a biomarker. To determine and follow longitudinal MEP reliability and correlations with clinical measures in MS patients. This is a single-center study in alemtuzumab-treated MS patients to evaluate temporal reliability of MEPs, identify MEP minimum detectible differences, and explore correlations with existing clinical scales. Ten MS patients recently treated with alemtuzumab were evaluated every 6 months over 3 years. Clinical evaluations consisted of expanded disability status scale, timed 25-foot walk, 6-minute walk, and nine-hole peg test. MEPs were measured twice, 2 weeks apart, every 6 months. Eight patients completed all 3 years of study. The intraclass correlation coefficient for MEP parameters ranged from 0.76 to 0.98. TA latency and amplitude with facilitation significantly and strongly correlated with all clinical measures, whereas the MEP duration modestly correlated. Biceps latency with facilitation significantly and moderately correlated with 9-hole peg test. Longitudinal correlations demonstrated good predictive values for either clinical deterioration or improvement. MEPs have excellent intrapatient and intrarater reliability, and TA MEPs significantly and strongly correlated with expanded disability status scale, 6-minute walk, and timed 25-foot walk, whereas biceps MEPs significantly and moderately correlated with nine-hole peg test. Further studies using larger cohorts of MS patients are indicated. ClinicalTrials.gov, Identifier: NCT02623946.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.