Abstract

In this paper we study the non-relativistic dynamic of a charged particle in the electromagnetic field induced by a periodically time dependent current J along an infinitely long and infinitely thin straight wire. The motions are described by the Lorentz–Newton equation, in which the electromagnetic field is obtained by solving the Maxwell’s equations with the current distribution J→ as data. We prove that many features of the integrable time independent case are preserved. More precisely, introducing cylindrical coordinates, we prove the existence of (non-resonant) radially periodic motions that are also of twist type. In particular, these solutions are Lyapunov stable and accumulated by subharmonic and quasiperiodic motions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.