Abstract

Time-resolved optical spin-quantum-beat measurements performed on magnetically doped II-VI bulk semiconductors reveal an increase of the electron spin dephasing time with rising temperature typical for motional narrowing. With the dephasing being notably faster than in undoped II-VI semiconductors, the magnetic dopants must play a key role, modifying the known dephasing mechanisms and introducing new ones. Focusing on the latter, we theoretically explore the spin dephasing channel arising from magnetization fluctuations sampled by the itinerant excitons. This mechanism suffices to explain quantitatively the results of our time-resolved Faraday-rotation experiments on optically excited Cd(1-x)Mn(x)Te which we present here as a function of magnetic field, temperature and manganese dopant density. In addition to electron spin-quantum beats, some of our experiments reveal hole spin beats as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.