Abstract

We present a theory of generation or alteration of the electron spin coherence and population in an n-doped semiconductor by reflection at the interface with a ferromagnet. The dependence of the spin reflection on the Schottky barrier height and the doping concentration in the semiconductor was computed for a generic model. The theory provides an explanation for the spontaneous electron spin coherence and nuclear polarization in the semiconductor interfaced with a ferromagnet and associated phenomena recently observed by time-resolved Faraday rotation experiments. The study also points to an alternative approach to spintronics different from spin injection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.