Abstract

The motion of two rigid bodies under rolling constraint is considered. In particular, the following two problems are addressed: (1) given the geometry of the rigid bodies, determine the existence of an admissible path between two contact configurations; and (2) assuming that an admissible path exists, find such a path. First, the configuration space of contact is defined, and the differential equations governing the rolling constraint are derived. Then, a generalized version of Frobenius's theorem, known as Chow's theorem, for determining the existence of motion is applied. Finally, an algorithm is proposed that generates a desired path with one of the objects being flat. Potential applications of this study include adjusting grasp configurations of a multifingered robot hand without slipping, contour following without dissipation or wear by the end-effector of a manipulator, and wheeled mobile robotics.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call