Abstract

There are many examples of mechanical systems that require rolling contacts between two or more rigid bodies. Rolling contacts engender nonholonomic constraints in an otherwise holonomic system. In this article, we develop a unified ap proach to the control of mechanical systems subject to both holonomic and nonholonomic constraints. We first present a state space realization of a constrained system. We then dis cuss the input-output linearization and zero dynamics of the system. This approach is applied to the dynamic control of mo bile robots. Two types of control algorithms for mobile robots are investigated: trajectory tracking and path following. In each case, a smooth nonlinear feedback is obtained to achieve asymptotic input-output stability and Lagrange stability of the overall system. Simulation results are presented to demonstrate the effectiveness of the control algorithms and to compare the performance of trajectory-tracking and path-following algo rithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.