Abstract
A study is made of the trajectories of free motion of test particles and photons in the Kerr metric, which describes the gravitational field of a rotating massive body. The trajectories are classified on the basis of the integrals of the motion, which have a clear physical meaning. The cases of a strong gravitational field in the neighborhood of a rotating black hole as well as the weak-field approximation describing the motion of particles in the gravitational field of a rotating star or galaxy are considered. The review includes bound states (orbits) in the field of a rotating mass, scattering and gravitational capture of particles and photons by a rotating black hole, trajectories of falling into a black hole, and the bending of light rays and the gravitational time delay of signals in the gravitational field of a rotating body.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have