Abstract
A three-dimensional domain decomposition method is used to solve the problem of wave interaction with a ship floating inside a harbour with arbitrary shape. The linearized velocity potential theory is adopted. The total fluid domain is divided into two sub-ones: one for the harbour and the other for the external open sea. Boundary integral equations together with the free surface Green function are used in the both domains. Matching conditions are imposed on the interface of the two sub-domains to ensure the velocity and pressure continuity. The advantage of the domain decomposition method over the single domain method is that it removes the coastal surface from the boundary integral equation. This subsequently removes the need for elements on the coastal wall when the equation is discretized. The accuracy of the method is demonstrated through convergence study and through the comparison with the published data. Extensive results through the hydrodynamic coefficients, wave exciting forces and ship motions are provided. Highly oscillatory behaviour is observed and its mechanism is discussed. Finally, the effects of incident wave direction, ship location as well as the harbour topography are investigated in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.