Abstract
In this paper we derive an explicit representation for the two-dimensional free-surface Green's function in water of infinite depth, based on a finite combination of complex-valued exponential integrals and elementary functions. This representation can easily and accurately be evaluated in a numerical manner, and its main advantage over other representations lies in its simplicity and in the fact that it can be extended towards the complementary half-plane in a straightforward manner. It seems that this extension has not been studied rigorously until now, and it is required when boundary integral equations are extended in the same way. For the computation of the Green's function, the limiting absorption principle and a partial Fourier transform along the free surface are used. Some of its properties are also discussed, and an expression for its far field is developed, which allows us to state appropriately the involved radiation condition. This Green's function is then used to solve the two-dimensional infinite-depth water-wave problem by developing a corresponding boundary integral equation, whose solution is determined by means of the boundary element method. To validate the computations, a benchmark problem based on a half-circle is presented and solved numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.