Abstract
We propose a spin transport induced by inertial motion. Our system is composed of two host media and a narrow vacuum gap in between. One of the hosts is sliding at a constant speed relative to the other. This mechanical motion causes the Doppler effect, which shifts the density of states and the nonequilibrium distribution function in the moving medium. Those shifts induce the difference in the distribution function between the two media, and they result in tunneling spin current. The spin current is calculated from the Schwinger-Keldysh formalism with a spin tunneling Hamiltonian. This scheme does not require temperature difference, voltage, or chemical potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.