Abstract
Robotic manipulators mounted on spacecraft experience a number of kinematic, dynamic, and control problems because the motion of the spacecraft is affected by the robot motion. In this paper, the general three dimensional equations of motion are derived for an n link manipulator mounted on a non-fixed base object. Instead of performing a single inverse kinematic calculation at the beginning of a movement to determine the required joint setpoints, multiple inverse kinematic updates are done throughout a movement. The updating sequence is determined by an optimal inverse kinematic updating algorithm. This motion control algorithm is based on experimental simulation results performed in Matlab and a set of performance indices that are used as guidelines. Simple PD joint controllers and a special joint trajectory generator are used for servoing the manipulator joints for a planar robot application. The derived motion control techniques incorporate the base motion without base motion control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.