Abstract
A substantial portion of the regulatory interactions in the higher eukaryotic cell are mediated by simple sequence motifs in the regulatory segments of genes and (pre-)mRNAs, and in the intrinsically disordered regions of proteins. Although these regulatory modules are physicochemically distinct, they share an evolutionary plasticity that has facilitated a rapid growth of their use and resulted in their ubiquity in complex organisms. The ease of motif acquisition simplifies access to basal housekeeping functions, facilitates the co-regulation of multiple biomolecules allowing them to respond in a coordinated manner to changes in the cell state, and supports the integration of multiple signals for combinatorial decision-making. Consequently, motifs are indispensable for temporal, spatial, conditional and basal regulation at the transcriptional, post-transcriptional and post-translational level. In this review, we highlight that many of the key regulatory pathways of the cell are recruited by motifs and that the ease of motif acquisition has resulted in large networks of co-regulated biomolecules. We discuss how co-operativity allows simple static motifs to perform the conditional regulation that underlies decision-making in higher eukaryotic biological systems. We observe that each gene and its products have a unique set of DNA, RNA or protein motifs that encode a regulatory program to define the logical circuitry that guides the life cycle of these biomolecules, from transcription to degradation. Finally, we contrast the regulatory properties of protein motifs and the regulatory elements of DNA and (pre-)mRNAs, advocating that co-regulation, co-operativity, and motif-driven regulatory programs are common mechanisms that emerge from the use of simple, evolutionarily plastic regulatory modules.
Highlights
The life of a gene product, from transcription to degradation, is controlled by a series of regulatory decisions
The higher eukaryotic cell has an extensive repertoire of DNA, RNA and peptide motifs that function as dynamic binding modules in complex formation, recruiters of basal regulatory pathways, or receivers of cell state information through association with or modification by their interaction partner [6,7,8]
We examine how the ability to readily add a functional module without disturbing a pre-existing regulatory interface promotes high functional density and how motifs can functionally modulate each other to create decision-making interfaces capable of integrating cell state information
Summary
The life of a gene product, from transcription to degradation, is controlled by a series of regulatory decisions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have