Abstract

Recent advancement of omic technologies provides researchers with opportunities to search for disease biomarkers at the systems level. However, selection of biomarker candidates from a large number of molecules involved at various layers of the biological system is challenging. In this paper, we propose multi-omic integrative analysis (MOTA), a network-based method that uses information from multi-omic data to identify candidate disease biomarkers. We evaluated the performance of MOTA in selecting disease-associated molecules from four sets of multi-omic data representing three cohorts of hepatocellular carcinoma (HCC) cases and patients with liver cirrhosis. The results demonstrate that MOTA leads to selection of more biomarker candidates that shared by two different cohorts compared to traditional statistical methods. Also, the networks constructed by MOTA allow users to investigate biological significance of the selected biomarker candidates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.