Abstract

The conventional most probable point (MPP)-based dimension reduction method (DRM) and following researches show high accuracy in reliability analysis and thus have been successfully applied to reliability-based design optimization (RBDO). However, improvement in accuracy usually leads to reduction in efficiency. The MPP-based DRM is certainly better from the perspective of accuracy than first-order reliability methods (FORM). However, it requires additional function evaluations which could require heavy computational cost such as finite element analysis (FEA) to improve accuracy of probability of failure estimation. Therefore, in this paper, we propose MPP-based approximated DRM (ADRM) that performs one more approximation at MPP to maintain accuracy of DRM with efficiency of FORM. In the proposed method, performance functions will be approximated in original X-space with simplified bivariate DRM and linear regression using available function information such as gradients obtained during the previous MPP searches. Therefore, evaluation of quadrature points can be replaced by the proposed approximation. In this manner, we eliminate function evaluations at quadrature points for reliability analysis, so that the proposed method requires function evaluations for MPP search only, which is identical with FORM. In RBDO where sequential reliability analyses in different design points are necessary, ADRM becomes more powerful due to accumulated function information, which will lead to more accurate approximation. To further improve efficiency of the proposed method, several techniques, such as local window and adaptive initial point, are proposed as well. Numerical study verifies that the proposed method is as accurate as DRM and as efficient as FORM by utilizing available function information obtained during MPP searches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.