Abstract

There are two commonly used analytical reliability analysis methods: linear approximation – first-order reliability method (FORM), and quadratic approximation – second-order reliability method (SORM), of the performance function. The reliability analysis using FORM could be acceptable in accuracy for mildly nonlinear performance functions, whereas the reliability analysis using SORM may be necessary for accuracy of nonlinear and multi-dimensional performance functions. Even though the reliability analysis using SORM may be accurate, it is not as much used for probability of failure calculation since SORM requires the second-order sensitivities. Moreover, the SORM-based inverse reliability analysis is rather difficult to develop. This paper proposes an inverse reliability analysis method that can be used to obtain accurate probability of failure calculation without requiring the second-order sensitivities for reliability-based design optimization (RBDO) of nonlinear and multi-dimensional systems. For the inverse reliability analysis, the most probable point (MPP)-based dimension reduction method (DRM) is developed. Since the FORM-based reliability index ( β) is inaccurate for the MPP search of the nonlinear performance function, a three-step computational procedure is proposed to improve accuracy of the inverse reliability analysis: probability of failure calculation using constraint shift, reliability index update, and MPP update. Using the three steps, a new DRM-based MPP is obtained, which estimates the probability of failure of the performance function more accurately than FORM and more efficiently than SORM. The DRM-based MPP is then used for the next design iteration of RBDO to obtain an accurate optimum design even for nonlinear and/or multi-dimensional system. Since the DRM-based RBDO requires more function evaluations, the enriched performance measure approach (PMA+) with new tolerances for constraint activeness and reduced rotation matrix is used to reduce the number of function evaluations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.