Abstract

A most probable failure point update method is proposed to obtain an accurate reliability-based design of electromagnetic devices or systems in the presence of uncertainties. The first-order reliability method has been recently adopted to solve electromagnetic design problems. However, its result could be very erroneous especially for nonlinear or multi-dimensional performance functions. To overcome the drawback, a three-step computational procedure is additionally executed to ensure prescribed design feasibility at an optimum obtained from the conventional first-order reliability method: failure rate calculation, reliability index update, and most probable point update. A mathematical example and a blushless DC motor design problem are provided to demonstrate numerical accuracy of the proposed method by comparison with the conventional method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.