Abstract
BackgroundAn epitope, Galα1-3Galβ1-4GlcNAc-R, termed α-gal, is present in glycoconjugates of New World monkeys (platyrrhines) and other mammals but not in hominoids and Old World monkeys (catarrhines). The difference is due to the inactivation of α1-3 galactosyl transferase (α1-3 GT) genes in catarrhines. Natural antibodies to α-gal are therefore developed in catarrhines but not platyrrhines and other mammals. Hypersensitivity reactions are commonly elicited by mosquito and tick vector bites. IgE antibodies against α-gal cause food allergy to red meat in persons who have been exposed to tick bites. Three enzymes synthesising the terminal α1-3-linked galactose in α-gal, that are homologous to mammalian α and β1-4 GTs but not mammalian α1-3 GTs, were recently identified in the tick vector Ixodes scapularis. IgG and IgM antibodies to α-gal are reported to protect against malaria because mosquito-derived sporozoites of malaria parasites express α-gal on their surface. This article explores the possibility that the α-gal in sporozoites are acquired from glycoconjugates synthesised by mosquitoes rather than through de novo synthesis by sporozoites.MethodsThe presence of proteins homologous to the three identified tick α1-3 GTs and mammalian α1-3 GTs in two important mosquito vectors, Aedes aegypti and Anopheles gambiae, as well as Plasmodium malaria parasites, was investigated by BLASTp analysis to help clarify the source of the α-gal on sporozoite surfaces.ResultsAnopheles gambiae and Ae. aegypti possessed several different proteins homologous to the three I. scapularis proteins with α1-3 GT activity, but not mammalian α1-3 GTs. The putative mosquito α1-3 GTs possessed conserved protein domains characteristic of glycosyl transferases. However, the genus Plasmodium lacked proteins homologous to the three I. scapularis proteins with α1-3 GT activity and mammalian α1-3 GTs.ConclusionsThe putative α1-3 GTs identified in the two mosquito vectors may synthesise glycoconjugates containing α-gal that can be transferred to sporozoite surfaces before they are inoculated into skin during blood feeding. The findings merit further investigation because of their implications for immunity against malaria, hypersensitivity to mosquito bites, primate evolution, and proposals for immunisation against α-gal.Graphical
Highlights
An epitope, Galα1-3Galβ1-4GlcNAc-R, termed α-gal, is present in glycoconjugates of New World monkeys and other mammals but not in hominoids and Old World monkeys
Components of mosquito saliva, that include many proteins, can cause immediate and delayed hypersensitivity reactions involving IgE and IgG antibodies as well as T lymphocytes in the skin at the bite site, resulting sometimes in severe delocalised and systemic pathology [1]
Ticks are rare opportunistic feeders on humans, and less is known about hypersensitivity reactions to tick salivary components injected into humans during blood feeding
Summary
Galα1-3Galβ1-4GlcNAc-R, termed α-gal, is present in glycoconjugates of New World monkeys (platyrrhines) and other mammals but not in hominoids and Old World monkeys (catarrhines). BLASTp analysis of the genus Plasmodium, An. gambiae and Ae. aegypti with the three functional mammalian α1-3 GTs did not identify homologous proteins at E ≤ 0.05.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.