Abstract

The need for the development of new methods for the reduction or elimination of the infections and diseases caused by mosquitoes and bacteria is very vital. The biomedical applications of silver nanoparticles (AgNPs) synthesized from biological sources especially plant extracts had contributed greatly to the inhibition of several microbes due to the presence of some secondary metabolites found in them. The biological approach of AgNPs synthesis is ecofriendly compared with other methods of AgNPs synthesis. In this study, we investigated the efficiency of AgNPs synthesized using the leaf extract of Morinda citrifolia against selected vector mosquitoes and bacteria. The leaves of Morinda citrifolia obtained were air dried, pulverized, extracted, and mixed with silver nitrate to form AgNPs. The synthesized AgNPs were characterized by UV–Visible spectroscopy, Fourier transformed infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX). The mosquito repellency and antimicrobial activities of the synthesized AgNPs were determined using standard methods. The peak at 436.14 nm on the UV–Visible spectrum confirmed the formation of AgNPs. The TEM microgram confirmed the synthesis of a spheroidal shape AgNPs with particle sizes in the range of 15–40 nm and an average size of 28 nm. The peak at 3.5 keV on the EDX microgram further confirmed the formation of AgNPs. In addition, the impact of green-synthesized AgNPs on some vector mosquitoes and human pathogens revealed percentage repellency in the range of 17.65 to 60.00% and percentage inhibition zones ranging from 20 to 64% respectively. Our study was the first among other studies to ascertain that AgNPs synthesized using Morinda citrifolia leaf extract possess promising mosquito repellency and antibacterial efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call