Abstract

In general, silver nanoparticles (AgNPs) are particles of silver with a size less than 100 nm. In recent years, synthesis of nanoparticles using plant extract has gained much interest in nanobiotechnology. In this concern, this study investigates green synthesis of AgNPs from silver nitrate using Sinapis arvensis as a novel bioresource of cost-effective nonhazardous reducing and stabilizing compounds. A stock solution of silver nitrate (0.1 M) was prepared. Different concentrations of silver nitrate (1, 2.5, 4, and 5 mM) were prepared from the above solution, then added to 5 mL of S. arvensis seed exudates. The mixtures were kept in 25°C. The synthesis of AgNPs was confirmed by the change in mixtures color from light yellow to brown. The antifungal activity of synthesized AgNPs was investigated in vitro. The resulting AgNPs were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). Formation of the AgNPs was confirmed by the change in mixture color from light yellow to brown and maximum absorption at 412 nm due to surface plasmon resonance of AgNPs. The role of different functional groups in the formation of AgNPs was shown by FTIR. X-ray diffraction was shown that the AgNPs formed in our experiments were in the form of nanocrystal, and TEM analysis showed spherical particles with an average size of 14 nm. Our measurements indicated that S. arvensis seed exudates can mediate facile and eco-friendly biosynthesis of colloidal-spherical AgNPs with a size range of 1 to 35 nm. The synthesized AgNPs showed significance antifungal activity against Neofusicoccum parvum cultures. The AgNPs were synthesized using a biological source. This synthesis method is nontoxic, eco-friendly, and a low-cost technology for the large-scale production. The AgNPs can be used as a new generation of antifungal agents.

Highlights

  • Silver nanoparticles (AgNPs) are particles of silver with a size less than 100 nm

  • Ultraviolet visible scanning spectroscopy studies It was observed that the maximum absorbance of reaction mixture occurs at 412 nm, indicating that AgNPs were produced

  • Fourier transform infrared spectroscopy (FTIR) study indicates that probably the carboxyl (-C=O), hydroxyl (-OH), and amine (N-H) groups in seed exudates are mainly involved in the reduction of Ag+ ions to Ag0 nanoparticles

Read more

Summary

Introduction

Silver nanoparticles (AgNPs) are particles of silver with a size less than 100 nm. Diverse chemical and physical methods have been used to prepare AgNPs with various sizes and shapes, such as UV irradiation [6,7], microware irradiation [8], chemical reduction [9], Khatami et al Bioresources and Bioprocessing (2015) 2:19 electron irradiation [10], photochemical [11], and lithography methods [12]. Most of these methods involve more than one step, high energy requirement, low material conversions, difficulty in purification, and hazardous chemicals [13]. The synthesis of nanoparticles by chemical methods may lead to the production of some toxic chemical compound that may have adverse effects on their applications [14]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call