Abstract

The efficacy of using predators for the biological control of mosquito disease vectors will be reduced if mosquito larvae respond to predator presence. The larvae of two mosquito species were investigated to study whether they responded to predator kairomones by increasing surface filter-feeding, which is a less active and thus less risky feeding strategy than bottom feeding. Culex quinquefasciatus Say is normally found in highly polluted water, where it will have little contact with predators. Except for some third instars, its larvae showed no response to four different types of predators. Culiseta longiareolata Macquart, living in rain-filled rock pools, is frequently attacked by a range of predators. All instars tested (second, third, and fourth instars) strongly responded to chemicals from dragonfly nymphs (Crocothemis erythraea Brullé), damselfly nymphs (Ischnura evansi Morton), and the fish Aphanius dispar Ruppel. However, they did not respond to final-instar water scorpions (Nepa cinerea L.), which would not feed on the mosquito larvae. Second- and third-instar Cs. longiareolata produced the same response to chopped up mosquito larvae as they did to dragonfly nymphs, but fourth instars produced a significantly stronger response to dragonfly nymphs-both those unfed and those fed in situ. Thus, Cs. longiareolata not only identified different predators and responded accordingly, but also responded to conspecific alarm pheromones. Cx quinquefasciatus showed little response to predators or to alarm pheromones from damaged conspecific larvae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call