Abstract

BackgroundMembranous nephropathy (MN) is one of the cardinal causes of nephrotic syndrome in adults, but an adequate treatment regimen is lacking. PurposeWe assessed the effect of Moshen granule (MSG) on patients with MN and cationic bovine serum albumin (CBSA)-induced rats. We further identified the bioactive components of MSG and revealed the underlying molecular mechanism of its renoprotective effects. MethodsWe determined the effect of MSG on patients with MN and CBSA-induced rats and its components on podocyte injury in zymosan-activated serum (ZAS)-elicited podocytes and revealed their regulatory mechanism on the Wnt/β-catenin/renin-angiotensin system (RAS) signalling axis. ResultsMSG treatment improved renal function and reduced proteinuria in MN patients and significantly reduced proteinuria and preserved the protein expression of podocin, nephrin, podocalyxin and synaptopodin in CBSA-induced MN rats. Mechanistically, MSG treatment significantly inhibited the protein expression of angiotensinogen, angiotensin converting enzyme and angiotensin II type 1 receptor, which was accompanied by inhibition of the protein expression of Wnt1 and β-catenin and its downstream gene products, including Snail1, Twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1 and fibroblast-specific protein 1, in CBSA-induced MN rats. We further identified 81 compounds, including astragaloside IV (AGS), calycosin, barleriside A and geniposidic acid, that preserve the podocyte-specific protein expression in ZAS-induced podocytes. Among these four compounds, AGS exhibited the strongest inhibitory effects on podocyte protein expression. AGS treatment significantly inhibited the protein expression of RAS components and Wnt1 and β-catenin and its downstream gene products in ZAS-induced podocytes. In contrast, the inhibitory effect of AGS on podocyte-specific proteins, β-catenin downstream gene products and RAS components was partially abolished in ZAS-induced podocytes treated with ICG-001 and β-catenin siRNA. ConclusionThis study first demonstrates that AGS mitigates podocyte injury by inhibiting the activation of RAS signalling via the Wnt1/β-catenin pathway by both pharmacological and genetic methods. Therefore, AGS might be considered a new β-catenin inhibitor that inhibits the Wnt1/β-catenin pathway to retard MN in patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.