Abstract
Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. In this work, MoS2-based FETs are fabricated using mechanical cleavage and standard photolithographic and metal evaporation techniques, and the detector exhibits a good ohmic contact. We show that the multilayer molybdenum disulfide photodetector has a fast photoresponse as short as 42 μs. The fast photodetector response is due to the decrease in the trap states in MoS2 flakes compared to monolayer MoS2, making its photoresponse time close to its intrinsic response. The large photocurrent with the responsivity and external quantum efficiency of 59 A/W and 13 800% for the wavelength of 532 nm was also measured. The fast response time, high responsivity, and the ease of fabrication of these devices make them important components for future optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.